962 resultados para Insulated Rail Joints


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulated rail joints (IRJs) possess lower bending stiffness across the gap containing insulating endpost and hence are subjected to wheel impact. IRJs are either square cut or inclined cut to the longitudinal axis of the rails in a vertical plane. It is generally claimed that the inclined cut IRJs outperformed the square cut IRJs; however, there is a paucity of literature with regard to the relative structural merits of these two designs. This article presents comparative studies of the structural response of these two IRJs to the passage of wheels based on continuously acquired field data from joints strain-gauged closer to the source of impact. Strain signatures are presented in time, frequency, and avelet domains and the peak vertical and shear strains are systematically employed to examine the relative structural merits of the two IRJs subjected to similar real-life loading. It is shown that the inclined IRJs resist the wheel load with higher peak shear strains and lower peak vertical strains than that of the square IRJs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ratchetting failure of railhead material adjacent to endpost which is placed in the air gap between the two rail ends at insulated rail joints causes significant economic problems to the railway operators who rely on the proper functioning of these joints for train control using the signalling track circuitry. The ratchetting failure is a localised problem and is very difficult to predict even when complex analytical methods are employed. This paper presents a novel experimental technique that enables measurement of the progressive ratchetting. A special purpose test rig was developed for this purpose and commissioned by the Centre for Railway Engineering at Central Queensland University. The rig also provides the capability of testing of the wheel/rail rolling contract conditions. The results provide confidence that accurate measurement of the localised failure of railhead material can be achieved using the test rig.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Railroad corridors contain large number of Insulated Rail Joints (IRJs) that act as safety critical elements in the circuitries of the signaling and broken rail identification systems. IRJs are regarded as sources of excitation for the passage of loaded wheels leading to high impact forces; these forces in turn cause dips, cross levels and twists to the railroad geometry in close proximity to the sections containing the IRJs in addition to the local damages to the railhead of the IRJs. Therefore, a systematic monitoring of the IRJs in railroad is prudent to mitigate potential risk of their sudden failure (e.g., broken tie plates) under the traffic. This paper presents a simple method of periodic recording of images using time-lapse photography and total station surveying measurements to understand the ongoing deterioration of the IRJs and their surroundings. Over a 500 day period, data were collected to examine the trends in narrowing of the joint gap due to plastic deformation the railhead edges and the dips, cross levels and twists caused to the railroad geometry due to the settlement of ties (sleepers) around the IRJs. The results reflect that the average progressive settlement beneath the IRJs is larger than that under the continuously welded rail, which leads to excessive deviation of railroad profile, cross levels and twists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulated Rail Joints (IRJs) are designed to electrically isolate two rails in rail tracks to control the signalling system for safer train operations. Unfortunately the gapped section of the IRJs is structurally weak and often fails prematurely especially in heavy haul tracks, which adversely affects service reliability and efficiency. The IRJs suffer from a number of failure modes; the railhead ratchetting at the gap is, however, regarded as the root cause and attended to in this thesis. Ratchetting increases with the increase in wheel loads; in the absence of a life prediction model, effective management of the IRJs for increased wagon wheel loads has become very challenging. Therefore, the main aim of this thesis is to determine method to predict IRJs' service life. The distinct discontinuity of the railhead at the gap makes the Hertzian theory and the rolling contact shakedown map, commonly used in the continuously welded rails, not applicable to examine the metal ratchetting of the IRJs. Finite Element (FE) technique is, therefore, used to explore the railhead metal ratchetting characteristics in this thesis, the boundary conditions of which has been determined from a full scale study of the IRJ specimens under rolling contact of the loaded wheels. A special purpose test set up containing full-scale wagon wheel was used to apply rolling wheel loads on the railhead edges of the test specimens. The state of the rail end face strains was determined using a non-contact digital imaging technique and used for calibrating the FE model. The basic material parameters for this FE model were obtained through independent uniaxial, monotonic tensile tests on specimens cut from the head hardened virgin rails. The monotonic tensile test data have been used to establish a cyclic load simulation model of the railhead steel specimen; the simulated cyclic load test has provided the necessary data for the three decomposed kinematic hardening plastic strain accumulation model of Chaboche. A performance based service life prediction algorithm for the IRJs was established using the plastic strain accumulation obtained from the Chaboche model. The predicted service lives of IRJs using this algorithm have agreed well with the published data. The finite element model has been used to carry out a sensitivity study on the effects of wheel diameter to the railhead metal plasticity. This study revealed that the depth of the plastic zone at the railhead edges is independent of the wheel diameter; however, large wheel diameter is shown to increase the IRJs' service life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulated rail joints are critical for train safety as they control electrical signalling systems; unfortunately they exhibit excessive ratchetting of the railhead near the endpost insulators. This paper reports a three-dimensional global model of these joints under wheel–rail contact pressure loading and a sub-model examining the ratchetting failures of the railhead. The sub-model employs a non-linear isotropic–kinematic elastic–plastic material model and predicts stress/strain levels in the localised railhead zone adjacent to the endpost which is placed in the air gap between the two rail ends at the insulated rail joint. The equivalent plastic strain plot is utilised to capture the progressive railhead damage adequately. Associated field and laboratory testing results of damage to the railhead material suggest that the simulation results are reasonable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insulated rail joint (IRJ) is an essential component in a track circuit that controls the signaling system. Failure of IRJs leads to improper functioning of the signals,with potential for catastrophic results. Therefore, IRJs are regarded as safety-critical sections of rail network; hence, all of their components must be maintained in pristine design condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulated rail joints are designed in a similar way to butt jointed steel structural systems, the difference being a purpose made gap between the main rail members to maintain electrical insulation for the proper functioning of the track circuitry at all times of train operation. When loaded wheels pass the gap, they induce an impact loading with the corresponding strains in the railhead edges exceeding the plastic limit significantly, which lead to metal flow across the gap thereby increasing the risk of short circuiting and impeding the proper functioning of the signalling and broken rail identification circuitries, of which the joints are a critical part. The performance of insulated rail joints under the passage of the wheel loading is complex due to the presence of a number of interacting components and hence is not well understood. This paper presents a dynamic wheel-rail contact-impact modelling method for the determination of the impact loading; a brief description of a field experiment to capture strain signatures for validating the predicted impact loading is also presented. The process and the results of the characterisation of the materials from virgin, in-service and damaged insulated rail joints using neutron diffraction method are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulated rail joints (IRJs) are an integral part of the rail track signaling system and pose significant maintenance and replacement costs due to their low and fluctuating service lives. Failure occurs mainly in rail head region, bolt- holes of fishplates and web-holes of the rails. Propagation of cracks is influenced by the evolution of internal residual stresses in rails during rail manufacturing (hot-rolling, roller-straightening, and head-hardening process), and during service, particularly in heavy rail haul freight systems where loads are high. In this investigation, rail head accumulated residual stresses were analysed using neutron diffraction at the Australian Nuclear Science and Technology Organisation (ANSTO). Two ex-service two head-hardened rail joints damaged under different loading were examined and results were compared with those obtained from an unused rail joint reference sample in order to differentiate the stresses developed during rail manufacturing and stresses accumulated during rail service. Neutron diffraction analyses were carried out on the samples in longitudinal, transverse and vertical directions, and on 5mm thick sliceed samples cut by Electric Discharge Machining (EDM). For the rail joints from the service line, irrespective of loading conditions and in-service times, results revealed similar depth profiles of stress distribution. Evolution of residual stress fields in rails due to service was also accompanied by evidence of larger material flow based on reflected light and scanning electron microscopy studies. Stress evolution in the vicinity of rail ends was characterised by a compressive layer, approximately 5 mm deep, and a tension zone located approximately 5- 15mm below the surfaces. A significant variation of d0 with depth near the top surface was detected and was attributed to decarburization in the top layer induced by cold work. Stress distributions observed in longitudinal slices of the two different deformed rail samples were found to be similar. For the undeformed rail, the stress distributions obtained could be attributed to variations associated with thermo-mechanical history of the rail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulated Rail Joints (IRJs) are safety critical component of the automatic block signalling and broken rail detection systems. IRJs exhibit several failure modes due to complex interaction between the railhead ends and the wheel tread near the gap. These localised zones could not be monitored using automatic sensing devices and hence are resorted to visual inspection only, which is error prone and expensive. In Australia alone currently there are 50,000 IRJs across 80,000 km of rail track. The significance of the problem around the world could thus be realised as there exists one IRJ for each 1.6 km track length. IRJs exhibit extremely low and variable service life; further the track substructure underneath IRJs degrade faster. Thus presence of the IRJs incur significant costs to track maintenance. IRJ failures have also contributed to some train derailments and various traffic disruptions in rail lines. This paper reports a systematic research carried out over seven years on the mechanical behaviour of IRJs for practically relevant outcomes. The research has scientifically established that stiffening the track bed for reduction in impact force is an ill-conceived concept and the most effective method is to reduce the gap size. Further it is established that hardening the railhead ends through laser coating (or other) cannot adequately address the metal flow problem in the long run; modification of the railhead profile is the only appropriate technique to completely eliminate the problem. Part of these outcomes has been adopted by the rail infrastructure owners in Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When wheels pass over insulated rail joints (IRJs) a vertical impact force is generated. The ability to measure the impact force is valuable as the force signature helps understand the behaviour of the IRJs, in particular their potential for failure. The impact forces are thought to be one of the main factors that cause damage to the IRJ and track components. Study of the deterioration mechanism helps finding new methods to improve the service life of IRJs in track. In this research, the strain-gage-based wheel load detector, for the first time, is employed to measure the wheel–rail contact-impact force at an IRJ in a heavy haul rail line. In this technique, the strain gages are installed within the IRJ assembly without disturbing the structural integrity of IRJ and arranged in a full wheatstone bridge to form a wheel load detector. The instrumented IRJ is first tested and calibrated in the lab and then installed in the field. For comparison purposes, a reference rail section is also instrumented with the same strain gage pattern as the IRJ. In this paper the measurement technique, the process of instrumentation, and tests as well as some typical data obtained from the field and the inferences are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of the extensive usage of continuous welded rails, a number of rail joints still exist in the track. Although a number of them exist as part of turnouts in the yards where the speed is not of concern, the Insultated Rail Joints (IRJs) that exist in ballasted tracks remain a source of significant impact loading. A portion of the dynamic load generated at the rail joints due to wheel passage is transmitted to the support system which leads to permanent settlements of the ballast layer with subsequent vertical misalignment of the sleepers around the rail joints. The vertical misalignment of the adjacent sleepers forms a source of high frequency dynamic load raisers causing significant maintenance work including localised grinding of railhead around the joint, re-alignment of the sleepers and/or ballast tamping or track component renewals/repairs. These localised maintenance activities often require manual inspections and disruptions to the train traffic loading to significant costs to the rail industry. Whilst a number of studies have modelled the effect of joints as dips, none have specifically attended to the effect of vertical misalignment of the sleepers on the dynamic response of rail joints. This paper presents a coupled finite element track model and rigid body track-vehicle interaction model through which the effects of vertical of sleepers on the increase in dynamic loads around the IRJ are studied. The finite element track model is employed to determine the generated dip from elastic deformations as well as the vertical displacement of sleepers around the joint. These data (dip and vertical misalignments) are then imported into the rigid body vehicle-track interaction model to calculate the dynamic loads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To effectively address the high rate of failure of Insulated Rail Joints (IRJs) in the heavy haul lines, a research plan was designed and implemented with particular attention to understand their mechanical behaviour and deterioration process. In this paper, part of this ongoing research is described. During the past decades many studies have tried to improve the service life of IRJs by introducing a new structural design or material for IRJ components. This paper looks into this problem from a different perspective highlighting the significance of localised condition of track to the loads and responses of the IRJs. Results from a series of field measurements conducted in a rail track within the Australian Rail Track Corporation (ARTC) network are discussed. The interactive effects of IRJ responses and localised track condition are further investigated using the results obtained from numerical simulations. The field measurements and the simulation results provide valuable insight on the influence of track condition to the behaviour of IRJs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite element numerical simulation is carried out to examine stress distributions on railhead in the vicinity of the endpost of a insulated rail joint. The contact patch and pressure distribution are considered using modified Hertzian formulation. A combined elasto-plastic material modelling available in Abaqus is employed in the simulation. A dynamic load factor of 1.21 is considered in modelling for the wheel load based on a previous study as part of this on going research. Shakedown theorem is employed in this study. A peak pressure load which is above the shakedown limit is determined as input load. As a result, a progressive damage in the railhead has been captured as depicted in the equivalent plastic strain plot.